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Abstract

We present improved algorithms to match two polygonal shapes P and ) to approximate
their maximum overlap. Let n be their total number of vertices. Our first algorithm finds
a translation that approximately maximizes the overlap area of PP and @) under translation
in O(n?c73) time. The error is additive and it is at most ¢ - min{area(P), area(Q)} with
probability 1 — n=?1) . We also obtain an algorithm that approximately maximizes the
overlap of P and @ under rigid motion in O(n3¢~*) time. The same error bound holds with
probability 1 —n~%M) . We also show how to improve the running time to 5(n +¢e73) for
the translation case when one of the polygons is convex.
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1 Introduction

1.1 Background

A common task in object recognition is to find a translation or rigid motion that minimizes
the dissimilarity measure between two objects. For two-dimensional shapes, a robust similarity
measure is the area of the symmetric difference [3]. Minimizing the area of symmetric difference
is equivalent to maximizing the overlap—the area of the intersection of the two shapes.

Given two polygonal shapes P and () with a total of n vertices, Mount et al. [14] gave
an algorithm to compute their maximum overlap under translation in O(n?*) time. If P and
Q@ are convex, de Berg et al. [§] presented an algorithm to find their maximum overlap under
translation in O(nlogn) time. For convex polygons, Ahn et al. [2] presented algorithms to find
a (1 — e)-approximate maximum overlaps under translation and under rigid motion, assuming
that the polygon vertices are stored in arrays in clockwise order around the polygon boundaries.
The running times are O(e~!logn + e 1log(1/e)) for the translation case and O(s~!logn +
£721og(1/e)) for the rigid motion case. By representing the overlap function as a sum of
algebraic functions, Vigneron [I6] devised an algorithm to compute a (1 — €)-approximate
maximum overlap in O(n%3) timel]

If the maximum overlap under rigid motion is not Q(max{area(P), area(Q)}), then P and Q
are hardly similar and knowing this is often sufficient for shape matching. This motivates the ap-
proximation of the maximum overlap to within an additive error of e-max{area(P), area(Q)} or
¢ -min{area(P), area(Q)}. Cheong et al. [6] proposed algorithms to approximate the maximum
overlap such that the additive error is e-min{area(P), area(Q)} with probability 1—n~°(1). The
running times are O(n?c~*log?n) time for the translation case and O(n®s~®log®n) time for
the rigid motion casdd, assuming that n > e~!. Recently, Alt et al. [4] also obtained some prob-
abilistic results with additive error € - min{area(P),area(Q)}, but their running times depend
on some geometric parameters, including the areas and perimeters of P and Q.

De Berg et al. [7] presented algorithms to align a set of disjoint unit disks with another
set of disjoint unit disks to obtain a (1 — €)-approximate maximum overlap. Let n be the
total number of disks. The running times are O(n?c2log(n/c)) for the translation case and
O(n*¢=3logn) for the rigid motion case. When the overlap is Q(n), they also presented a
probabilistic algorithm that runs in O(n?c~*log(n/e)log®n) time.

In R? for d > 3, Ahn et al. [T] showed that the maximum overlap of two convex polytopes
under translation can be computed in O(nl%2+110g%n) time, where n is the total number of
bounding hyperplanes, and the running time can be improved to O(n log®? n) in R3. Vigneron’s
method [I6] computes a (1 — e)-approximate maximum overlap of two possibly non-convex
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polytopes under rigid motion in O ((”?2 log time, assuming that the two polytopes

are represented by a union of n interior-disjoint d-simplices.

1.2 Owur contributions and overview

We build upon Cheong et al.’s framework [6] to approximate the maximum overlap of two
polygonal shapes P and (), which may have multiple connected components and holes. We do
not assume that the supporting lines of the edges of P and () are in general position.

Let n be the total number of vertices in P and (). The running times of our algorithms
are O(n2e3log"® nlog(n/e)) for the translation case, and O(n3e~*1log®? nlog®?(n/e)) for the
rigid motion case. The error is additive and it is at most € -area(P) with probability 1— n~ 00,

We use O(+) to hide multiplicative factors that are polynomial in the logarithm of n and 1/e.
2There is a typo in [6] in the running time bound in the case of rigid motion as noted in [16].



If @ is convex, the running time for the translation case can be improved to O(nlogn +
e 31og?% nlog lo%) When both P and @) are general polygonal shapes, we can switch the
roles of P and @, so the error bound ¢ - area(P) is equivalent to ¢ - min{area(P), area(Q)}.

In comparison with the results of Cheong et al. [6], our running times have almost the same
dependence on n (differing by some polylog factors) but lower polynomial dependence on 1/e.
In the case of rigid motion, we obtain an improvement from ¢~® to e~*. Our bounds are free
of geometric parameters as opposed to the result of Alt et al. [4]. For the rigid motion case,
the running time of Vigneron’s algorithm [I6] has a lower dependence on ¢ (73 versus %)
and a significantly higher dependence on n (n® versus n?), but it returns a (1 — )-approximate
maximum overlap even if the maximum overlap is tiny compared to min{area(P), area(Q)}.

When P or ) has multiple connected components and/or holes, we can preprocess it in
O(nlogn) time as follows so that the shape boundary is a single non-self-crossing polygonal
curve. To deal with holes, we can compute a non-self-crossing spanning tree of the holes and the
outer boundary (e.g. minimum spanning tree), and then split the tree edges into narrow channels
of negligible area. These new channels have negligible effect on the maximum overlap. The
splitting of the tree edges into narrow channels can also be simulated symbolically. Similarly,
if a shape has multiple connected components, we can connect them by a non-self-crossing
spanning tree to form a shape with a single connected boundary. Hence, we can always assume
that the boundary of input shape is a single non-self-crossing polygonal curve.

We briefly sketch the framework of Cheong et al. [6] upon which we build our results. The
set of all possible translations in the plane is just R? because every translation is specified by a
vector t. For every t € R?, define u(t) = area((P +t) N Q)/ area(P). Cheong et al. proposed to
sample a set S of points from P uniformly at random, and count the number of sample points
contained in a translated copy of Q. For every t € R?, define ug(t) = [(S +t) N Q|/|S|. Their
idea is to find £ = argmax,cp2 15(t) and show that pu(f) > pu(t) — e, where { = argmax; g pu(t).
The dependence of pg(t) on t is best interpreted by forming an arrangement of translated copies
of Q. For every s € S and every t € R?, s + ¢ belongs to @ if and only if t € Q — 5. Notice
that @ — s is obtained by applying the translation vector —s to ). Therefore, if we form the
arrangement of 7 = {Q — s : s € S}, then for every cell f of the arrangement and every pair of
translations t, ¢’ € f, (S+t)NQ = (S+t')NQ. (A face of Q can be the interior of @, the interior
of an edge of @, or a vertex of Q. A cell of the arrangement of 7 is the common intersection
of some faces of some copies of Q). So a cell of positive dimension is a relative open set.) It
follows that argmax,cp2 f15(t) can be computed by examining all vertices of the arrangement of
T, which is the algorithm of Cheong et al. [6]. Rigid motion is treated similarly by adding one
more dimension to model the angle of rotation. The arrangement becomes three-dimensional.

We achieve our bounds by proving some results on the depth variation in the arrangements.
The strategy is to show that there are plenty vertices of similar depth near the deepest arrange-
ment vertex, so we can sample the arrangement vertices to “approximate” the deepest vertex
without constructing the whole arrangement. The depth variation result in the translation case
applies to any collection of compact shapes in R? that satisfy some mild conditions. Compact
shapes other than polygons are allowed, and the collection is more general than the one for
the shape matching problem. We establish some geometric properties of the 3D arrangement
for the rigid motion case that allows us to build the depth variation result upon the one for
the translation case. Still, this yields only an O(n?¢~°) running time. We employ a dynamic
planar point location data structure to reduce the running time to O(n3~4).



2 Matching under translation

Since the basic framework considers how different translated copies of () contain different subsets
of the random sample S, it is related to the notion of range space and VC-dimension [15]. A set
X and a set R of subsets of X form a range space (X, R). A finite subset Y C X is shattered
by R if every subset of Y equals to X N R for some R € R. The VC-dimension of (X,R) is the
cardinality of the largest finite subset Y C X that can be shattered by R.

Lemma 2.1. Let K be a union of k interior-disjoint d-simplices in R%. Let X be a subset of
RY. Let R ={X N (K —t):te€R}. The range space (X,R) has VC-dimension O(dlogk).

Proof. Let Z be a finite subset of points in X that is shattered by R. It suffices to prove
an O(dlogk) bound on |Z|. Let A be the arrangement of {K — z : z € Z}. A has cells of
dimensions from 0 to d, and the total number of cells is O(k%|Z|?) [10]. Notice that for every
z € Z, a translation t belongs to K — z if and only if z belongs to K — t. For every pair of
translations ¢,t € R? that belong to the same cell of A, t € K — 2 <= t' € K — z, which
implies that z € K —t <= 2z € K —t. Hence, ZN (K —t) = Z N (K —t'). The cardinality
of {Z N(K—t):te Rd} is thus at most the total number of cells in A. On the other hand,
the cardinality of {Z N(K—t):te Rd} is 214! because Z is shattered by R by assumption.
Hence, 214l = O(k? Z|%), which implies that |Z| = O(dlogk). O

Lemma [ZT]implies the following result that for every t € R?, ug(t) is a good approximation
of u(t).
Lemma 2.2. For every constant r > 0, there exists a constant ¢ > 0 such that if S is a set

of points sampled uniformly at random from P and |S| > ce=2logyn, then with probability at
least 1 —n~", |us(t) — u(t)| < e for every t € R2.

Proof. Let (X, R) be a range space with finite positive VC-dimension v. For every R € R,
let pr denote the probability that a point drawn from X uniformly at random belongs to R.
The e-approximation result [I2] [I3] says that there exists a constant ¢y > 0 such that for every
g,q € (0,1), if we draw a subset S uniformly at random from X with |S| > coe2(v + In(1/q)),
then it holds with probability at least 1 — ¢ that for every R € R, | |[SNR|/|S| —pr| < e.
Take X = P, R = {PN(Q —1) : t € R?} and ¢ = n~". Notice that pprg_y = p(t) and
SO (P N@=/IS| = 1SN (@=BI/IS| = (S +6) N Q/IS| = ps(®). By Lemma I,
v = O(logn), and thus the desired bound follows. O

2.1 Depth variation in an arrangement

Define a shape to be a compact subset of R2. Given a shape F, 9F denotes its boundary. Let
F be a family of shapes. Among the vertices of the arrangement of F, we use V(F) to denote
the subset that consists of intersections between boundaries of distinct shapes in F. The depth
of a point ¢ in the arrangement of F is depth(¢,F) = [{F € F: t € F'}|. We call the family F
simple if the following conditions are satisfied.

e F contains a finite number of shapes.

e For every shape F' € F, OF is a non-self-crossing closed curve. (Recall that polygons
with multiple connected components and holes can be accommodated by constructing
appropriate spanning trees as discussed in the overview.)

e For every pair of distinct shapes F, Fy € F, if F{NFy # (), then 0F; NOF} is a finite point
set and |0F; NOF,| > 2. For every triple of distinct shapes in F, the common intersection
of their boundaries is empty.
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Figure 1: Copies of @ in T are shown. The white dot is an intersection in 9F; NOF,. The black
dots on OF; are the t;’s in V*. The grey dots on 9F; are the t5’s in V. Let k = 2. Since the
depth of the white dot is 4 = k + 2, U™ consists of the first £ = 2 black dots in anticlockwise
order around 0F} from the white dot, and U~ consists of the first k = 2 grey dots in clockwise
order around 0Fj from the white dot.

Given a deep enough vertex t in the arrangement of F, we show that there are plenty vertices
with depth similar to that of . Lemma [2.4] shows a weaker version of this result which will be
used to prove a stronger version—Lemma We need the following technical result.

Lemma 2.3. Let F be a simple family of shapes in R%. Let F and F' be two distinct shapes
in F. If one can draw a curve from t € F tot' € F' that crosses the boundaries of exactly j
shapes in F\ {F,F'}, then |depth(t, F) — depth(¢, F)| < j+ 1.

Proof. By assumption, we can draw a curve that crosses the boundaries of exactly j shapes in
F\ {F,F'}. Therefore, |depth(t,F \ {F,F'}) —depth(¢', F\ {F,F'})| < j. Since t € F and
t'" € F', we have the identities depth(¢,F) = depth(¢,F \ {F,F’}) + depth(¢,{F'}) + 1 and
depth(t', F) = depth(t’, F \ {F, F'}) 4+ depth(¢’, {F'}) + 1. Thus, |depth(¢, F) — depth(t', F)| <
|depth(t, F \ {F, F'}) — depth(t’, F\ {F, F'})| + |depth(¢, {F'}) — depth(¢, {F})| <j+1. O

Lemma 2.4. Let ty be a vertex in V(F), where F is a simple family of shapes in R%. Let Iy
and Fy be the shapes in F such that tg € OFy N OF,. If depth(tog, F) > k + 2 for some integer
k > 0, then there exists a subset U C V(F) in OF, \ 0Fy such that |U| = 2k and for every
t € U, |depth(t, F) — depth(to, F)| < k.

Proof. For each shape F' € F \ {F1, F»} that intersects Fj, there are at least two points in
OF N 0F; because F is a simple family, and let t;ﬁ and t5 be the first and last intersection
points in dF N 0F; with respect to the anticlockwise traversal of 0F} starting from ty. Let
VTt = {t;;rv :F e .F\{Fl,FQ} N FNE # @} Let V™ = {t;v F e f\{F]_7F2} N FNEy # @}
Figure [I] shows an example.

Since depth(tg, F) > k + 2, at least k + 2 shapes in F contain ¢y (including F; and F5).
Thus, at least k shapes in F \ {F1, F»} intersect Fy, including those containing ¢y and possibly
more. By the simplicity of F again, for every F' € F that intersects Fi, neither t;ﬁ nor ¢ lies
in the boundary of any shape in F \ {F, F1}. Therefore, neither ¢} nor 5 can be t}, or t,, for
some F' # F. It follows that |[VT|= |V~ |>k,and VT NV~ = 0.

Order the points in VT according to the anticlockwise traversal of OF} starting from t.
Collect the first k points in VT in this order and put them in the ordered list U*. For the ith



point t;ﬁ € U™, the anticlockwise traversal of OF; from ¢ty to t;ﬁ crosses the boundaries of 7 — 1
shapes in F\ {F, F»}. Therefore, Lemma[23limplies that |depth(t;§, F)—depth(ty, F)| <i < k.
Symmetrically, we order the points in V'~ according to the clockwise traversal of OF) starting
from tg, collect the first k points in V'~ in this order, and put them in the ordered set U~.
Then, |depth(ty, F) — depth(to, F)| < k for every t. € U~. The sets UT and U~ are disjoint
as VT NV~ =(. Thus, the set U = UT UU ™ satisfies the lemma. O

Lemma [Z.4] shows that for every vertex ¢, there are at least 2k vertices with depth similar
to that of ¢. The next lemma improves this bound to (k + 1)(k + 2)/2.

Lemma 2.5. Let tg be a vertex in V(F), where F is a simple family of shapes in R%. If
depth(to, F) > k + 2 for some integer k > 0, then there exists a subset U C V(F) such that
|U| = (k+1)(k+2)/2 and for every t € U, |depth(¢, F) — depth(to, F)| < k.

Proof. Let Fy be a shape in F whose boundary contains ty. Order V(F)N0Fy in anticlockwise
order along 0Fj starting from ¢y. Since depth(tg, F) > k+ 2, at least k + 2 shapes in F contain
to. Therefore, at least k + 1 shapes in F \ {Fp} intersect Fp, including those containing tg
and possibly more. For every shape F' € F \ {Fy} that intersects Fy, let tr denote the first
intersection point between OF and OFj in anticlockwise order along 0Fj starting from ¢y. Let
try, ... tm,,, be the first k + 1 such intersection points (including t() in anticlockwise order
around 0Fp starting from to. Thus, tp, = to.

We claim that for ¢ € [1,k + 1], |depth(tg,, F) — depth(tg, F)| < i — 1. The claim is
trivially true for ¢ = 1 as tp, = to. For i € [2,k + 1], the anticlockwise traversal of 0Fj
from ty = tp, to tp, crosses the boundaries of ¢ — 2 shapes in F \ {F1, F;}. By Lemma 23]
| depth(tp,, F) — depth(tg, F)| <i—1.

Our claim implies that depth(tg,, F) > depth(to,F) — (i —1) > k — i+ 3. Applying
Lemma 2] to tg, gives a subset U; C V(F) N (0F; \ 0Fy) such that |U;| = 2(k — i+ 1)
and for every t € U, |depth(t,F) —depth(tp,F)| < k — i+ 1. Then, for every t € Uj,
|depth(t, F) — depth(to, F)| < |depth(t, F) — depth(tg,, F)| + |depth(tp,, F) — depth(tg, F)| <
(k—i+1)+(—1)=k.

Let U = Uf’:ll Ui U {tp :i€[l,k+1]}. The sets Ufill Ui and {tp, : i € [1,k+ 1]} are
disjoint because every U; is disjoint from OFjp, but every tg, belongs to 0Fy. As F is a simple
family, each point in Ufill U; belongs to the intersection of exactly two shapes’ boundaries.
It follows that each point in Uf;rll U; is contained in at most two distinct U;’s. Hence, |U| >

(k+1)+ 3552k —i+1) = (k+ 1) (k +2)/2. O

2.2 Algorithm for translation

Recall that T = {Q — s: s € S}. Because S is a random sample, it is clear that 7 is a simple
family with probability 1. We introduce a procedure DEPTHSAMPLE in Algorithm [ to sample
aset W C V(T). Lemma 20 proves its correctness and probability bound.

Lemma 2.6. Let g € (0,1). Let { = argmax,cpe pu(t). Let t = argmax,cy pus(t), where W is
the point set returned by DEPTHSAMPLE. If W = 0, let maxsey pus(t) = 0 and let t = (0,0).
There exists a constant ¢ > 3 such that if |S| > cey? Inn, then:

(i) Pr(ps(t) > ps(t) — g)>1-n"", and
(ii) Pr(u(t) > p(f) —3g9) > 1—2n"".

Proof. Let k = |0|S|| — 2. Since ¢ > 3, £9|S| > 3 and so k > 1. If k > depth(,7) — 2, then
us(t) = depth(t,7)/|S| < (k+2)/|S| < eo. So maxyew ps(t) > 0> ug(t) — eo, satisfying (i).



Algorithm 1 Construct a random sample W of the vertex set V(7))
1: function DEPTHSAMPLE(n, S, @, )
2 w < [(9rne;?Inn)/2], where &y € (0,1) and r is some positive value fixed a priori.
3 initialize W to be an empty list.
4 for i =1 to w do
5: pick distinct pair s;, s; uniformly at random from S.
6
7
8
9

pick an edge e; uniformly at random from the edge set of () — s;.
pick an edge €] uniformly at random from the edge set of @ — /.
if e; and €} intersect then
: compute the intersection point ¢; of e; and €.
10: append t; to W.

11: end if
12: end for
13: return W

14: end function

Suppose that k& < depth(#,7)—2. Let { be a vertex of the cell containing  in the arrangement
of T. Then, depth(f,7) > depth(f,T) > k + 2. Since depth(,7) > 1, we can choose  to
be a vertex from V(7). By Lemma [27] there exists a subset U C V(7)) such that |U| =
(k+1)(k +2)/2 and for every t € U, |depth(¢, T) — depth(Z, T)| < k. Let E; be the event that
the edges e and €’ sampled in the ith iteration in DEPTHSAMPLE intersect, and t; = eNe’ € U.
Observe that if ¢; € U for some i between 1 and [(9rn?c;?Inn)/2], then the lemma is satisfied
becase jus(ti) > us() — |us(t) — ps(i)| = (depth(E, T) — | depth(t;, T) — depth(7, T)))/|S| >
(depth(£, T) — k)/IS] = ps() — <o,

It remains to bound the probability that E; does not happen for all . There are no more than
n?|S|? /2 pairs of edges from the shapes in 7. Among these pairs, |U| of them yield intersection
points in U. Thus, Pr(E;) > 2|U|/(n?|S|?) = (k + 1)(k + 2)/(n?|S|?) > (s0|S| — 2)(e0|S| —
1)/(n?|S|?) > 2¢3/(9n?). The last inequality follows from the fact that |S| > 3/go. Hence,
the probability that E; does not happen for all i is at most (1 — 25/ (9n2))(9m25°21nn)/ ’ <
e~"mn — 57" This completes the proof of (i).

By Lemma 2.2} with probability at least 1 —n~", |ug(f) — p(t)| < o and |ug(f) — pu(f)| < eo.
Then, (i) implies that p(f) > p(f) — 3o with probability at least 1 —2n~". This proves (ii). O

The shape matching algorithm under translation works as follows. Call DEPTHSAMPLE
with 9 = €/3 to obtain the set W. By Lemma [2.6[(ii), it suffices to count |(S +t) N Q)| for every
t € W and report t = argmax,cy ps(t). Partition T = {Q — s : s € S} into m subfamilies
7; each consisting of |S|/m copies of @, where m = \/logn/e. Compute the arrangement of T;
and the depths of its cells by a plane sweep. Also, compute a point location data structure of
the arrangement of 7;. For every t € W and every i € [1, m], we locate ¢ in the arrangement of
7; to obtain the depth d;(t) of ¢t. As a result, pg(t) = > d;(t)/|S| for every t € W, and then
we select argmax;cyps(t).

Theorem 2.7. Let P and Q be two polygonal shapes with a total of n vertices. Let opt be
the mazimum overlap of P and Q under translation. For every e € (0,1), one can compute
a translation t such that area((P +t) N Q) > opt — ¢ - area(P) with probability 1 — n=°W) in
O(n%c~3log™> nlog(n/e)) time.

Proof. The correctness and probability bound follow from Lemma [26[(ii) and the set-
ting of ¢9 = ¢/3. To construct S, we triangulate P and then sample points from



the triangles with probabilities proportional to their areas. This takes O(nlogn + |S])
time.  Calling DEPTHSAMPLE takes O(n?c 2logn) time. Processing the arrangement
A; of T; takes O(|A;|log|A;]) = O(n?|S|*m=21og(n|S|/m)) time. Then, the computa-
tion of d;(t) for all t € W takes O(|W|log(n|S|/m)) time. The total running time is
thus O(n%e~*m~"log? nlog(nlogn/(s?m)) + mn?c=%lognlog(nlogn/(e>m))). Setting m =
Viogn/e gives an O(nc~3log!® nlog(n/e)) bound. O

If @Q is convex, we can reduce the running time further because an arrangement of translates
of () has a lower complexity.

Theorem 2.8. Let P be a polygonal shape and let QQ be a convex polygon with a total of n
vertices. Let opt be the mazimum overlap of P and Q under translation. For every e € (0,1),
one can compute in O(nlogn + e 3log®® nlog k’%) time a translation t such that area((P +
£)N Q) > opt — ¢ - area(P) with probability 1 — n= W),

Proof. Since @ is convex, for every distinct pair s,s" € S, either (Q —s) N (Q — s’) = 0 or the
boundaries of Q — s and ) — s’ intersect at exactly two points. It means that the arrangement
of {Q — s :s € S} has at most |S|? vertices that are intersections of boundaries of shapes in
{Q — s :s € S}. This is a significant reduction from the n?|S|?/2 bound when Q is a general
polygonal shape. We introduce changes in DEPTHSAMPLE and the handing of 7; to exploit this
property.

We make two changes in DEPTHSAMPLE. First, after sampling distinct s,s" € S, we do
not sample edges from QQ — s and @ — s’. Instead, we directly compute the intersections
between the boundaries of @ — s and @ — s’ in O(logn) time [9], and if the intersection is
non-empty, randomly return one of the two intersections. Second, DEPTHSAMPLE iterates
w = [9re~2Inn] times instead of [(9rn2e~21Inn)/2] times. The number w of iterations is only
needed in bounding [[;” (1 — Pr(E;)) from above towards the end of the proof of Lemma 2.6
Since we now sample from at most |S|? arrangement vertices, one can adapt the derivation for
Pr(E;) straightforwardly and obtain Pr(E;) > €2/9. Then, we can show that [];2, (1-Pr(E;)) <
n~" as before. We conclude that the running time of DEPTHSAMPLE is reduced to O(e =% log? n).

We also change the handling of 7;. Instead of building a point location data structure for 7,
we locate all points in W in a batch by a plane sweep over 7;. We sweep a line from left to right
over 7;. Since @ is convex, its boundary can be partitioned into upper and lower convex chains
by splitting at the leftmost and rightmost vertices. The sweep events include the endpoints of
the convex chains, the boundary intersections, and the points in W. The sweep status structure
stores the chains that currently intersect the sweep line. Given two chains whose intersections
with the sweep line are adjacent, we can compute the intersections between these two chains
in O(logn) time [9]. Therefore, the time needed becomes O((|S|*m =2 + |W|) log(|S|*m =2 +
W) log n).

As a result, the total running time is now reduced to

O(nlogn + ¢ %log?n) +
O(|S)>m ™ log(|S>m =2 + |[W|) log n + m|W|log(]S|*m 2 + |W|) logn)
= O(nlogn+ e *m log? nlog(|S|*m =2 + |W|) + me2log? nlog(|S|>m~=2 + |W])).

Setting m = /logn/e gives an O(nlogn + ¢ log>® nlog 1°6™) running time. O

€

3 Matching under rigid motion

We use M to denote the configuration space R? x [0,27) of rigid motion. For every subset
X C R? and every 0 € [0,27), Xy denotes the rotated copy of X around the origin by angle



Figure 2: Let @ be a quadrilateral as shown in the figure. Two translates of ) are rotated
and moved upward simultaneously, forming two twisted pillars. The dashed-dotted lines at the
cross-section at 6 = ¢ form the set £?. The line £ at § = 0 sweeps out the shaded surface £,
as it rotates and moves upward to £y. As 0 varies, the two supporting lines ¢ and ¢’ from the
same copy of @ stays concurrent, and ¢y N ¢} is equal to (¢ N ¢')y, sweeping out the bold curve
shown.

0 in the anticlockwise direction. For every (¢,0) € M, the corresponding rigid motion rotates
@ around the origin by 6 in the anticlockwise direction, and then translates P by t. Define
wu(t, ) = area((P +t) N Qy)/ area(P). We will work with a point set S sampled uniformly at
random from P, and we define pg(t,6) = |(S +t) N Qy|/|S].

We use L to denote the set of distinct supporting lines of the edges of Q). We do not make
any general position assumption, therefore, L may contain parallel lines and three or more lines
in L may have a common intersection. However, although two edges of () may have the same
supporting line, L does not store any duplicate. Using the random sample S C P, we define
L={{—s:LeL N se S}, which is a refinement of 7 = {Q —s: s € S}.

If we rotate L and @) around the origin by angle 6 in the anticlockwise direction, we get
L0={tg—s:0cL N secSand T = {Qp —s:s € S} Notice that £? is not obtained
by rotating £ around the origin by angle 6. Similarly, 77 is not obtained by rotating 7. For
every t € R?, define the depth of ¢ in the arrangements of 7% and £? to be depth(t, 7?) =
depth(t,£%) = |{Qg —s € T? : t € Qp — s}|.

Treat the 6-axis of M as the vertical axis. For every subset X C M and every s € R?, we
use X (s) as the shorthand for X — (s,0), i.e. translate X by the vector (—s,0). Define Q. =
{(z,y,0) e M: 0 €[0,2m) A (z,y) € Qp}, which looks like a twisted pillar (Figure[). Define 7*
to be the set of twisted pillars {Q.(s) : s € S} obtained by sliding @, horizontally by different
translations in S. For every ¢ € L, define £, = {(z,y,0) e M: 0 € [0,27) A (z,y) € ly}, which
is the curved surface swept by £ as we rotate it and slide it vertically. Sliding the surfaces £, by
different translations in S gives a collection of surfaces £* = {l.(s) : ¢ € L N s € S}. Notice
that £* is a refinement of 7*. For every (t,0) € M, define the depth of (¢, ) in the arrangements
of T* and L* to be depth((¢,0),T*) = depth((t,0), L*) = [{Qx«(s) € T* : (t,0) € Q«(s)}.

V(T?) is the subset of vertices in the arrangement of 7 that are intersections of boundaries
of distinct shapes in 7. Notice that 7% and £? are horizontal cross-sections of 7* and L*,
respectively, at the value §. Hence, depth((t,6),7*) = depth((t,0),L£*) = depth(t,T?) =
depth(t, £%).

For every rigid motion (t,0) € M, s +t € Qy <= t € Qp—s < (t,0) € Q«(s). Thus,
the deepest vertex in the arrangement of £* maximizes pug(t,60). The next result bounds the
VC-dimension of an appropriate range space in the rigid motion case as in Lemma 2] in the
translation case.

Lemma 3.1. Let X be a subset of R%2. Let R = {X N (Qy—1t) :t €R? A0 €[0,2m)}. The
range space (X, R) has VC-dimension O(logn).



Proof. Let Z be a finite subset of points in X that is shattered by R. It suffices to prove an
O(logn) bound on |Z|. Let A be the arrangement of {(.(z) : ¢ € L N z € Z}, which is a
refinement of the arrangement of {Q.(z) : z € Z}. Take a line ¢ € L. Let its equation be
(a,b) -t = ¢, where t = (t,t,) € R? and a, b and c are constants. Then, the equation of ¢, is

(a b) ' < cos 6 sin9> ' <t1> _ .
—sinf cosf ty
If we replace cos6 by a variable « and sinf by a variable [, the system becomes aat, +
afty — bpt, + bat, = c, which is a multivariate polynomial of degree two. As a result, A is
the arrangement of the zero-sets of degree-two polynomials in four variables restricted to the
subset that satisfies o + 32 = 1. By the result in [5], A has at most O(n?®|Z|?) cells. By the

same argument in the proof of Lemma 1] 214l = O(n3|Z|?) as Z is shattered by R. It follows
that |Z| = O(logn). O

Next, we prove that ug(t,0) is a good approximation of u(t,6), which is analogous to
Lemma 22 in the translation case.

Lemma 3.2. For every constant r > 0, there exists a constant ¢ > 0 such that if S is a set
of points sampled uniformly at random from P and |S| > ce2logyn, then with probability at
least 1 —n™", |us(t,0) — u(t,0)| <e for every (t,0) € M.

Proof. Take X = P, R={PN(Qg —1): (t,0) € M} and ¢ = n~". Let pr be the probability
that a point drawn from P uniformly at random belongs to R. If R = PN (Qg — t), then
pr = p(t,0) because pu(t,0) = area((P+1t) NQy)/ area(P) = area(P N (Qp —t))/ area(P). Also,
ISOR|/IS| = 1SN (PN (Qg—1)|/IS] = [(S+1t)NQsl/|S| = ps(t,f). The VC-dimension of
O(log n) in Lemma [B] and the e-approximation result [12, [13] says that there exists a constant
¢p > 0 such that for every €, ¢ € (0,1), if we draw a subset S uniformly at random from X with
|S| > coe2(O(logn) + In(1/q)), then it holds with probability at least 1 —q = 1 —n~" that for
every Re R, | |SNR|/|IS| — pr | < ¢, equivalently, |us(t,0) — u(t,0)| <e. O

3.1 Depth variation in the configuration space

We will show that it is possible to sample vertices from the arrangement of £* to find one that
is approximately deepest. We first prove two technical results in Lemmas and [3:4] about the
surfaces in L*.

Lemma 3.3. Let {1 and {5 be two possibly non-distinct lines in R2. Let s; and sy be two
possibly non-distinct points in R2.

(i) If £ and ¢y are not parallel, then £y, (s1) N la(s2) is a strictly -monotone curve, i.e.
any plane orthogonal to the 0-axis intersects the curve at at most one point.

(ii) If €1 and Ly are parallel and sy # sg, then £y (s1) Nl «(s2) is non-empty for at most two
values of 0. At each such value of 0, €19 — s1 = lag — 2. Furthermore, if {1 = f2 and
s1 # s, then £ 4(s1) Nl (s2) is non-empty for exactly two values of 6.

Proof. Consider (i). Since ¢; and {5 are not parallel, 1 9 — s; and l3 9 — s2 are not parallel for
all . Thus, they intersect at exactly one point for each 6 € [0, 27).

Consider (ii). Since ¢; and ¢y are parallel, {1 g — s and l9 9 — so are parallel for all . Thus,
¢y 9—s1 and 5 g — so intersect if and only if they coincide. Let the equation of ¢; be (a,b)-t = ¢,
where t = (t,,t,) € R?, and a, b and ¢; are constants. The line Ui g — s; is always tangent to
the circle C; : ||t — s4]| = |ei|(a® + %) ~1/2.



If ¢; and cp have the same sign, the parallel lines 1 9 — s1 and 39 — so intersect if and
only if they coincide at a common outer tangent of C; and Cy. No such common outer tangent
exists if C] is inside Cy or vice versa. If {1 = {5, then c; is equal to ¢y and the circles C7 and
C5 have the same radius, so they are not nested and have exactly two common outer tangents.

If ¢; and ¢ have different signs, then /19 — s and 59 — so intersect if and only if they
coincide at a common inner tangent of Cy and Cs. No such common inner tangent exists if C
and () intersect at two points, or if one is nested inside the other. O

Lemma 3.4. Let (1, {3 and {3 be three possibly non-distinct lines in R?. Let s1,so and s3 be
three possibly non-distinct points in R%. For i € [1,3], let s; = (Siz, 8iy), and let the equation
of 4 be (ai,b;) - (tz,ty) = c;i, where (tz,t,) € R2, and a;, b; and ¢; are constants. If a point
(tz,ty,0) € M belongs to £y (s1) Nla(s2) N¥3.(s3), then 6 satisfies the following equation.

ar br a1s1z+bisiy ar br aisiy —bisiy ar b1 ¢
a9 b2 a8 x + b282’y cos 6 + a2 bg 2824y — ngg,x sinf = a9 bg &) (1)
a3 bz azs3; + b3szy a3z bz azs3y, — b3s3 az bz c3

Furthermore, if €1 and lo are not parallel and sz is picked uniformly at random independent
from s1 and sy from some subset of R? with positive area, then with probability 1, equation ()
has at most two solutions for 6 € [0,2m).

Proof. For i € [1,3], since (t,0) € ¢;.(s;), the point ¢ belongs to ¢; 9 — s;. Equivalently,
t_g € l; — (s;)_p. The equation of ¢; — (s;)_g is given by

ai(ty + 8iqpcos 0+ s;,sinf) + bi(ty — s;zsinf + s, cos ) = ¢

<~ a;t; + bity — ¢ + (aisi,x + biSi,y) cos 6 + (aisi,y — bism) sinf =0

Let t_g = (2/,y'). (Recall that t_y denotes the point ¢ rotated around the origin by angle —6
in the anticlockwise direction.) We write these equations in matrix form:

ar by —c1 + ((1181,3; + b1517y) cos 0 + ((118171/ — b1517x) sin 6 z! 0
as by —co+ (2524 + basay) cos + (azse,y — basa ;) sind y =10
as b3 —c3 + ((1383,3; + b353,y) cos ) + ((138371/ - b3537x) sin 1 0

The square matrix on the left hand side of the equation must not be invertible; otherwise,
multiplying its inverse to both sides give (2,3',1) = (0,0,0), a contradiction. Therefore,

ar b1 —c1+ (1810 + bisiy)cosl + (ars1,y — bis1,,)sinf
as by —co+ ((128271« + b2527y) cos 0 + (a2827y — b25271-) sinf| =0
az by —c3+ (azs3, + bgssy)cosl + (agssy — bgss ) sin b

The linearity of determinant gives equation (II).

Now, suppose that ¢; and ¢y are not parallel and s3 is picked uniformly at random inde-
pendent of 51 and sy from a subset of R? with positive area. To show that equation () has at
most two solutions for 6 € [0,27), it suffices to show that the coefficient of cosé is non-zero.
Expanding the coefficient of cos 8 by its last column, we get

ay b1 a181,x+b1517y

ap b
ay by assag+basay| = (agssa+bsssy)| |+ K
a9 bg
as b3 a383,x+b3537y
ap b
= |7t Y(as,bs) - s3+ K (2)
a9 b2
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where K denotes the remaining terms that are independent of s3. Since ¢; and /5 are not

parallel, Zl Zl # 0. Since (as,b3) is a non-zero vector orthogonal to ¢3, (as,b3) # (0,0).
2 b2

Hence, (@) is non-zero with probability 1 as s3 is picked uniformly at random from a subset of

R? with positive area. O

We use Lemma B3] and B4l above to prove some combinatorial properties of the arrangement
of £*. The first property is that three surfaces in £* intersect in at most two points.

Lemma 3.5. Let ¢; . (s;) for i € [1,3] be three distinct surfaces in L* such that s1,s2 and s3
are not all the same. The common intersection of these surfaces contains at most two points
with probability 1.

Proof. Suppose that ¢, /s and {3 are parallel and s1, so and s3 are distinct. By Lemma B3[(ii),
l1,4(s1) and £ 4(s2) intersect at at most two values of 6, and for each such value of 0, ¢1 9 — s;
and /59 — s coincide. But then, since f3¢ is also parallel to ¢y g, £39 — s3 does not intersect
{19 — s1 with probability 1 because s3 is chosen randomly from P independent of s; and ss.
Thus, the surfaces £1,(s1),¢2(s2) and ¢3 ,(s3) have no common intersection in this case with
probability 1.

Suppose that ¢1, ¢y and ¢3 are parallel but s1,s9 and s3 are not all distinct. Assume that
51 = S9. Since £14(s1) and o ,(s2) are distinct surfaces by assumption, the lines ¢; 9 — 51 and
59 — s9 are distinct and parallel for all §. So the surfaces £1 ,(51),¢2«(s2) and f3.(s3) have no
common intersection in this case.

Suppose that exactly two of the ¢;’s are parallel, say £; and ¢s. If s; = s, then we can argue
as in the previous paragraph that ¢1 ,(s1),f2«(s2) and £3.(s3) have no common intersection.
If s1 # s9, then by Lemma B3] (ii), ¢1 .(s1) and £ .(s2) intersect at at most two values of 6.
For each such value of 0, /39 and ¢ g are non-parallel as /1 and /3 are non-parallel, so £3 9 — s3
intersects £; g — s1 at exactly one point.

Suppose that no two ¢;’s are parallel. By Lemma[34] the three surfaces intersect at at most
two values of 6 with probability 1. At each such value of 6, the intersection is a single point
because £1 ,(s1) N¥a.(s2) is a strictly #-monotone curve by Lemma B.3(i). O

Let V(L") denote the subset of the vertices of the arrangement of £* such that each vertex
in V(£*) lies in the common intersection of three distinct surfaces ¢; ,(s;), where i € [1, 3], for
some {1, 0,03 € L and s1, s3,s3 € S such that s1, sy and s3 are distinct. Although a vertex in
V(L£*) may belong to more than three surfaces in £* by definition, we show that this happens
with probability zero.

Lemma 3.6. For every (t,0) € M, if (t,0) € V(L*), then with probability 1, (t,0) belongs to
exactly three surfaces in L*.

Proof. Take a vertex (to,6p) € V(L*). By definition, (to,0y) belongs to three distinct surfaces
i «(si), where i € [1,3], for some distinct sj, 52,53 € S. Consider any surface f4.(s4) €
L5\ {l14(51),02,4(52), €3 +(s3)}. Since s1, sp and s3 are distinct, s4 must be different from
at least two of them. Assume that sq & {s2,s3}. By Lemma B3] ¢1 .(s1) N l2(52) N €y (54)
contains at most two intersection points. For each such intersection point (¢, ), the line £3 9 —s3
does not contain t with probability 1 because s3 is randomly chosen from P independent of
s1, 82 and sy. Hence, (to,00) € ﬂ?zl ?; «(s;) with probability zero. O

Given a deep point in the arrangement of L£*, we show that there are plenty vertices in
V(L*) nearby with similar depths.
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Lemma 3.7. Let 0y be a value in [0,27) such that T% is a simple family of shapes. Let ty be
a vertex in V(’TQO). If depth(to, 7’90) >k + 2 for some integer k > 0, then with probability 1,
there exists a subset U C V(L*) such that |U| > k(k + 1)(k + 2)/3 and for every (t,0) € U,
|depth((t,0), £*) — depth(to, T%)| < 2k + 2.

Proof. By Lemma [I7 there is a set Uy of (k 4 1)(k 4 2)/2 vertices in V(7%) such that for
every t € Uy, |depth(t, T%) — depth(ty, 7%)| < k.

Take a vertex t € Up. Assume that t € 9(Qg, — s1) N O(Qp, — S2) for two distinct sample
points 51,52 € S. Let {1 g, —s1 and 3 g, — 52 be the supporting lines of the two edges of Qg, — 51
and Qg, — s2 that intersect at ¢, respectively. Since {1 g, and /3 g, are not parallel, neither are
¢ and ly. By Lemma B3(i), £1 +(s1) N ¢2.4(s2) is a strictly #-monotone curve & in M.

For each s € S\ {s1,s2}, the line ¢ 9 — s is parallel to ¢; 9 — s1 for all §. Furthermore,
Lemma [B.3[ii) implies that ¢; 9 — s and ¢; 9 — s; must coincide at exactly two values of 6.
Equivalently, the surface ¢1 (s) must intersect the curve & at exactly two points. Since s1, s2
and s are distinct, these two intersection points belong to V/(£*). Similarly, the surface £5 ,(s)
also intersects the curve & at exactly two intersection points in V(£*). By Lemma [B.6] with
probability 1, no intersection point in 1 ,(s) N & or f2.(s) N& is contained in a fourth surface.
As a result, & contains at least 4]S| — 8 vertices in V(£*) that are the intersections between
& and the supporting surfaces of Q.(s), where s € S\ {s1,s2}. Observe that these vertices
on & contain as a subset the intersections between & and the boundaries of copies of @, in
T\ {Qu(51), Qu(s2)}.

Walk upward from (¢,6y) along &. Collect a vertex in V(L£*) whenever we meet one. When
passing such a vertex, our depth in 7\ {Q.(s1), Q«(s2)} may increment or decrement. Thus, if
we collect k such vertices, our depth in 7* at any of the vertex collected differs from depth(t, 7%)
by at most k42, and hence from depth(tg, 7%) by at most 2k +2. An exception may occur if 6
increases to 27 before k vertices are collected; in this case, the upward traversal along & wraps
around to # = 0 and continue from there. Symmetrically, we walk downward from (¢, 6y) along
& to collect another k vertices in V(£*). As [S| > depth(ty, T%) > k +2, we get 4/S| — 8 > 4k.
Therefore, the bidirectional traversals of & collect exactly 2k vertices.

Let U be the set of all vertices collected this way along & over all t € Uy. By Lemma [3.6],
each vertex in V(L£*) is at the intersections of exactly three surfaces with probability 1, so it is
at the intersection of three curves, each formed by a pair from the triple of surfaces. It follows
that when we collect vertices along &; over all t € Uy, a vertex can be collected up to three times.
Hence, the total number of distinct vertices identified is at least 2k|Up|/3 = k(k+1)(k+2)/3. O

3.2 Algorithm for rigid motion

The algorithm for rigid motion resembles the one that allows translation only. We introduce
a procedure RIGIDDEPTHSAMPLE in Algorithm [2 to sample a set W of vertices from V(L*).
Following the analysis of Lemma [2.6] we obtain Lemma [B.§ below.

Lemma 3.8. Let £y be a value in (0,1). Let (,0) = argmax gyem p(t,0). Let (t,0) =
argmax gy ps(t,0), where W is the point set returned by RIGIDDEPTHSAMPLE. If W = (),
let max gyew ps(t,0) = 0 and let (t,0) = (0,0,0). There exists a constant ¢ > 6 such that if
|S| > ceg? Inn, then:

(i) Pr(ps(i,0) > ps(t,0) —co) > 1—n"", and

(i) Pr(u(f,8) > (i, 0) —3¢0) >1—2n"".
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Algorithm 2 Construct a random sample W of the vertex set V(L£*)
1: function RIGIDDEPTHSAMPLE(n, S, @, €p)
2 w « [36rnisy 3Inn], where o € (0,1) and r is any positive value fixed a priori.
3 for i =1 to w do
4 pick distinct triple sq, s9, s3 at random from S.
5: pick three supporting lines ¢1, ¢, {3 of @) uniformly at random.
6
7
8
9

if the surfaces £1+(s1), f2,+(s2) and #3 ,(s3) intersect at some vertices then
randomly pick a vertex (t,6) from the intersection.
add (t,0) to W.
: end if
10: end for
11: return W
12: end function

Proof. Let k = |g0|S|/2] — 1. Since ¢ > 6, g9|S| > 6 and so k > 1. If k > depth((Z,6), £* )
2, then ug(t,0) = depth((t,0),£*)/|S| < (k+2)/|S| < e. So max gyew ps(t,0) > 0

s (L, 0) — eo, satisfying (i).

Suppose that k& < depth((%, 0) L£*)—2. Since S is chosen uniformly at random, T0is a simple
family of shapes with probability 1. Let £ be a vertex of the cell containing £ in the arrangement
of 7?. Since depth(, 7—9) = depth((t 0),£*) > k42 > 1, we can choose { to be a vertex from

(TG) Notice that depth(, 7—0) > depth(t, To) > k + 2. By Lemma B there exists a subset
U C V(L) such that U] = k(k + 1)(k + 2)/3 and for every (t,0) € U, |depth((t,0),L*) —
depth(f, T%)| < 2k + 2. Let E; the event that the three surfaces sampled in the ith iteration
in RIGIDDEPTHSAMPLE intersect, and the intersection point (¢;,6;) selected belongs to U.
Observe that if (tz, 0;) € U for some i, then the lemma is satisfied because ps(t;, 0;) > ps(f, 0) —
s (ti, 0:) — ps (£, 6)| = (depth(i, T%) —| depth((t:, 6;), £) — depth(f, T)[)/|S| > (depth(i, T%)
2% — 2)/15] = ps(i,0) ~ eo.

It remains to bound the probability that F; does not happen for all . There are no more
than n3|S|3/6 triples of surfaces from L£* generated by distinct triple of points from S. By
Lemma [B5] each such triple of surfaces intersect in at most two points. Thus, Pr(FE;) >
3|UI/(n?|S[%) = k(k + 1)(k +2)/(n®[S]%) = (e0/2 — 2/|S])(€0/2 = 1/|S)(0/2)/n* = €5/ (36n2).
The last inequality follows from the fact that |S| > 6/¢9. Hence, the probability that E; does
not happen for all i is at most (1 — &j/(36n" ))36rn350 Fnn < erInm — =" This completes the
proof of (i).

By Lemma [.2] with probability at least 1 —n~ |,uS(t 0) — u(t,0)| < eo and |us(i, ) —

u(t,0)| < 0. Then, it follows from (i) that u(Z,0) > ,u(t 6) — 32 holds with probability at least
1 —2n~". This proves (ii). O

The shape matching algorithm under rigid motion works as follows. We call RIGIDDEPTH-
SAMPLE with g9 = ¢/3 to obtain a sample set W. For each (t,6) € W, one can count
(S +1t)NQel = |(S+1t)_p N Q| by answering a point location query for (s + t)_g for ev-
ery s € S as follows. First, construct the arrangement of the supporting planes of ) and mark
the cells in the arrangement that lies in Q. This can be done in O(n?) time using an incremental
algorithm [I0]. Second, build a point location data structure for this arrangement [I1], which
uses O(n3logn) space and preprocessing time, and answers a point location query in O(log? n)
time. Finally, for each s € S and each (¢,6) € W, we issue a point location query to decide
whether (s +t)_yp € Q. This allows us to compute |(S + t) N Qg|. The total running time is
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Figure 3: The figures show the cross-section arrangements for different values of . The sweep
plane hits one or more vertices, when the shaded region collapses to a single point. As the
sweep plane moves away from these vertices, new shaded region appears.

O(n®c%), which already compares favorably with the O(n3c~®) running time in [6]. We can
do better as follows.

Partition S into m subfamilies Sy, ..., S,,, each consisting of |S|/m points. We will perform
a space sweep over each arrangement A; of {{,(s) : £ € L A s € S;}. Observe that for each
0 € [0,27), the cross-section arrangement {lg —s: £ € L N s € S;} of A; is an arrangement of
lines. As we sweep a plane from 6 = 0 to § = 27, the geometry of the cross-section arrangement
changes continuously; however, there is no topological change before the sweep plane hits the
next vertex of A;.

We maintain a data structure of Goodrich and Tamassia that answers point location queries
in a dynamic monotone planar subdivision [I1]. The cross-section arrangement can be viewed as
a directed planar graph with every edge directed from its upper endpoint to its lower endpoint.
By the result in [I1], if the geometry of the subdivision is changed such that the the topology
of the directed planar graph does not change, the point location data structure needs not be
updated at all. Let IV be the complexity of the subdivision. The data structure answers a point
location query in O(log? N) time and an update can be done in O(log N) time.

When sweeping over A;, there are three types of events when the topology of the directed
planar graph changes.

e Type 1: Refer to Figure Bl At some ¢ € [0,2m), there exists & > 3 lines £; 4 — s;
for ¢ € [1,k] such that: (i) ﬂle Uiy —si # 0, (ii) £1,..., ¢, are mutually non-parallel,
(iii) s1 & {s9,...,5} and (i, lig — s # 0 for all § € [0, 2n).

e Type 2: Refer to Figure[8l At some ¢ € [0, 2), there exists two lines ¢; 4 — s; for i € [1, 2]
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such that: /1 4 —s1 = f3 4 — 52 and for every 6 # ¢ in an arbitrarily small neighborhood of
¢, the following conditions hold: (i) ¢; 9 —s1 and £ g — s2 are distinct parallel lines, (ii) no
two lines in the cross-section arrangement intersect in the interior of the strip bounded by
l19 — s1 and f9 9 — s2, and (iii) for every edge in the cross-section arrangement that lies
in the strip bounded by ¢ gy — s1 and 59 — s2, at least one of edge endpoints has vertex
degree four.

e Type 3: At some ¢ € [0,27), some line £, becomes horizontal. Hence, for every s € Sj,
{4 — s becomes horizontal.

Events of types 1 and 2 happen when the sweep plane hits one or more vertices of A;. If L
satisfies the general position assumption, there are exactly three lines involved in a type 1 event,
and for every edge that lies in the strip in a type 2 event, both endpoints of that edge have
vertex degree four. But we do not make the general position assumption. An event of type 3
happens when the directions of some edges in the directed planar graph switch.

Before proving the completeness of the above list of events, we first establish two technical
lemmas.

Lemma 3.9. Let (1,05,03 and {4 be four possibly non-distinct lines in R? such that {1 and
L3 are not parallel and lo and 4 are not parallel. Let s1 and so be two possibly non-distinct
points in R2. Let t; and ty be two points in R? such that t1 € {1 Ny and to € lo N Ly, If
lrp — 81, lag — 82, U39 — 51, and Ly 9 — s2 have a non-empty common intersection for some 0,
then ||81 - 82” = Htl - tQH.

Proof. Since t; € €1 N3 and to € ly N Ly, we get t1 g — 51 € (L19 — s1) N (€39 — s1) and
tog—S2 € (5279 — 82) N (64,9 — 82). If ELQ — 81, fgﬂ — 89, 63,9 — 81, and f479 — S9 have a non-empty
common intersection for some ¢, we can set t; g —s1 = to g — s for that particular 6. It follows
that (tl — tg)g = S1 — S2 and hence ||81 — 82” = ||t1 — tQH. Ol

Lemma 3.10. Let {1 .(s1), l2,+(52), l34(s3), and £y .(s4) be four distinct surfaces in L*. Let
E denote the event that at least three points in {s1, s2, 53,84} are identical. Let E' denote the
event that (\}_, li(s;) = 0. Then, Pr(EV E') = 1.

Proof. If E does not happen, then there are only two other possibilities:
e F4: Some triple of points in {s1, s2, s3,s4} are distinct.

e Fy: There are exactly two pairs of identical points in {si, s9, s3, s4}, but the four points
are not all equal.

We show below that Pr(E’|E;) = 0 if Pr(E;) # 0 and Pr(E’|Ey) = 0 if Pr(Es) # 0. This
implies that Pr(Ey A E') = Pr(Ey A E') = 0, and therefore, Pr(EV E') =1 - Pr(EAE') =
1 —Pr(Ey ANE") —Pr(Ey ANE') =1 as stated in the lemma.

Suppose s1, $2, and s3 are distinct, i.e. F1 happens. By Lemma B3] there exist at most two
(t,¢)’s in R? x [0, 27) such that (¢, ¢) belongs to the common intersection of ¢ ,(s1), l2.(s2),
and /(3 .(s3). It means that (¢,¢) € V(L£*). Then, Lemma [B.6] says that (¢,¢) ¢ €4.(s4) with
probability 1. Therefore, Pr(E’|E;) = 1, or equivalently, Pr(E’|Ey) = 0.

Suppose that s; = s3 and so = s4 but s; # s9, i.e. Ey happens. If {1 and /3 are parallel,
then £1 9 — 51 and £39 — 51 are parallel and distinct for all 6 because £ . and /3, are distinct
surfaces by assumption. Similarly, if /5 and /¢4 are parallel, then /39 — so and f49 — s2 are
parallel and distinct for all #. The remaining possibility is that ¢; and ¢35 are non-parallel, and
¢y and /¢4 are non-parallel. By Lemma B9l ¢, 9 — s1, a9 — s2, {39 — s1, and £49 — s2 have a
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non-empty common intersection for some 6 only if s; and sy are at some fixed distance apart.
This happens with probability zero because s; and sy are random independent samples from
P. In summary, Pr(E’|Ey) = 1, or equivalently, Pr(E’|Ey) = 0. O

Type 3 events are only needed for because the data structure of Goodrich and Tammasia
represents the cross-section arrangement as a directed planar graph in which every edge is
directed from its upper endpoint to its lower endpoint. We prove below that Type 1 and
Type 2 events capture all combinatorial changes in the cross-section arrangement.

Lemma 3.11. With probability 1, every combinatorial change to the cross-section arrangement
during the sweep is of either type 1 or type 2.

Proof. A combinatorial change happens only when certain region in the cross-section arrange-
ment collapses at some angle ¢. Consider the bounding lines of the collapsed region.

Case 1: The bounding lines are pairwise non-parallel. Let ¢y 4 — s1, ..., {; 4 — sg, where
k > 3, be the bounding lines of the collapsed region. We claim that sq,...,s; cannot be all
equal. Otherwise, since ﬂle(fw — 8;) is a single point, ﬂle(&ﬁ — s;) is a single point for
all 8, meaning that they cannot bound any region to be collapsed just before # becomes ¢, a
contradiction. This proves our claim.

If k = 3, we may assume that sy ¢ {s2,s3}. Since f5 4 — sp and {3 4 — s3 are non-parallel
by assumption, f3 9 — s and {39 — s3 are non-parallel for all . We conclude that this event is
of type 1. Consider the case that k > 4. By our claim, we can assume that s; # s; for some
i € [2,k], say sp. Applying Lemma B.I0 to ¢; 4 — s; for i € [1,4] shows that s; = s3 = s4 or
s9 = 83 = s4. Without loss of generality, assume that sy = s3 = s4. Applying Lemma 310
again to f1 4 — s1, £3.4 — 83, l4,4 — 84, and l5 4 — s5 shows that s3 = sy = s5. By repeating
this analysis, we conclude that ss,...,s; are all equal, but s; is not equal to them. Since
ﬂfﬂ(fi,(b — ;) is a single point, ﬂfﬂ(&ﬂ — s;) is a single point for all 8, This shows that the
event is of type 1.

Case 2: A pair of distinct bounding lines are parallel. Let the parallel bounding lines be
l19— 51 and £y g — so. Since {1 4 — 51 = l9 4 — 52 but {19 — 51 # £2 9 — 52 just before § becomes
¢, the points s; and s must be different. There are two things to be proved in order to show
that the event is of type 2. First, we need to show that for every # in an arbitrarily small
neighborhood of ¢, no two distinct lines cross inside the strip bounded by ¢1 g — s1 and /3 g — so.
Second, every edge in the strip has at least one endpoint with vertex degree four.

Assume to the contrary that there exist /3,¢, € L and s3,s4 € S such that /39 — s3 and
l49 — s4 cross in the interior of the strip. By continuity, ﬂ?:1(€z‘,¢ — s;) # 0. By Lemma B0,
at least three points in {s1, s9, s3, 54} are identical, say so = s3 = s4. Since ﬂ?ZQ(&,(b —8;) # 0,
ﬂf‘zQ (Ui,9— s;) # 0, for all §. But then ¢3 g — s3 cannot cross £4,9 — s4 in the interior of the strip
just before § becomes ¢ because such a crossing would have to lie on £ g — s2, a contradiction.
This proves the first condition.

Assume to the contrary that there exists an edge e in the strip such that every endpoint
of e has vertex degree greater than 4. Let /35 — s3 be the line containing e. In this case,
there exist two distinct lines ¢4 9 — s4 and f5 9 — s5 that pass through the intersection points
(l19—51)N (39— s3) and (29 — 51) N (f3,9 — 53), respectively. Because 6 is an arbitrary value
in a arbitrarily small neighborhood of ¢, it means that /19 — s1, £39 — 53, and 49 — 54 are
concurrent for some range of #. This happens only if s1 = s3 = s4. We can similarly conclude
that sp = s3 = s5. Hence, s1 = s2. But then since {1 4 — 51 = f3 4 — s2, the lines £; 9 — 51 and
{9 — s must be equal for all ¢, contradicting the fact that they bound a strip to be collapsed
just before 6 becomes ¢. This proves the second condition. O

In summary, the improved shape matching algorithm under rigid motion works by sweeping
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the three-dimensional curved arrangement A; for j € [1,m]. Throughout the sweep, the cross-
section arrangement is represented and maintained using the dynamic point location structure
of Goodrich and Tamassia [I1]. This data structure is queried for each point (¢,0) € W
encountered during the sweep, so that we obtain the depth d;(¢,8) of each (¢,6) € W in A;.
Finally, pus(t,0) = 3772, d;(t,0)/]S| and we return arg max gy ps(t, 0).

We are ready to prove the performance of the shape matching algorithm under rigid motion.

Theorem 3.12. Let P and @ be two polygonal shapes with a total of n vertices. Let opt be
the maximum overlap of P and Q under rigid motion. For every e € (0,1), one can compute a
rigid motion (1,0) such that area((P + ) N Qg) > opt — ¢ - area(P) with probability 1 — n—OW
in O(n3e~*10g”3 nlog®>(n/e)) time.

Proof. The correctness and probability bound follow from Lemma B.§|ii) and the setting of
g0 = £/3. Locating all points in W during the sweep over A; takes O(|W|log?(n|S|/m)) time.

A type 1 event is simulated by O(k) vertex deletions and insertions, and edge deletions
and insertions. We charge these updates to the Q(k) triples of surfaces {{i. — s1, i« —
iy liv1 — Sig1} for ¢ € [2,k — 1]. By Lemma B3] every such triple induces at most two
vertices, meaning that every such triple is charged O(1) times. Handling all type 1 events thus
takes O(n?|S|>m~3log(n|S|/m)) time. Similarly, a type 2 event induced by two lines ¢1 4 — 53
and /3 4 — s2 can be simulated by O(n|S|/m) updates. (Since every edge inside the strip has
at least one edge of vertex degree four by the definition of a type 2 event, the only topolog-
ical change that happens is the collapse of the strip.) We charge these updates to the pair
{€1,4(s1), l2,+(s2)}. By Lemma B.3(ii), the pair {¢1 .(s1), f2+(s2)} is charged by at most two
events of type 2. Handling all type 2 events thus takes O(n3|S|3m~3log(n|S|/m)) time. When
a line /4 becomes horizontal in a type 3 event, {4 — s becomes horizontal for every s € S;. There
are O(n|S|/m) edges on every such line £, — s, so the batch of type 3 events for {4 can be simu-
lated by O(n|S|>m~2) edge deletions and insertions. Hence, it takes O(n?|S|*m~21og(n|S|/m))
time to handle all type 3 events during the space sweep.

In the event (with probability zero) that the space sweep encounters a violation of Lemma[3.6]
or a combinatorial change not of type 1 or 2, we can just halt and return (,0) = (0,0,0).

Summing over all A;’s gives an O(n3|S[>m=2log(n|S|/m) + m|W|log?(n|S|/m)) running
time, which becomes O(n3e~41og® nlog®?(n/e)) by setting m = e~ log?? nlog~/3(n/e). O

4 Conclusion

We presented improved algorithms to find the maximum overlap of two polygonal shapes under
translation and rigid motion, respectively. They improve the previous best running times by
Cheong et al. [6] from O(n?c=) to O(n?c73) in the translation case, and from O(n3c~%) to
O(n?¢~%) in the rigid motion case. Moreover, degeneracy and disconnected shapes are allowed,
which should make the results more applicable in practice. It is open whether the dependence
on n can be reduced. It would also be interesting to develop fast shape matching algorithms in
three dimensions.
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